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ABSTRACT

Part A of this report examines several high-frequency models for
nonprincipal-plane scattering from a rectangular, perfectly conducting
plate. Two methods, the Method of Equivalent Currents and corner
diffraction coefficients, are considered. Formulations for
second-order Physical Theory of Diffraction equivalent currents and
for corner diffracted fields are presented. Comparisons are made
among the following plate models: first-order Physical Optics
equivalent currents, first-order Geometrical Theory of Diffraction
equivalent currents, first-order Physical Optics/Physical Theory of
Diffraction equivalent currents, second-order Physical Theory of
Diffraction equivalent currents, corner diffraction coefficients,
Moment Method, and experimental results. Results away from grazing
are accurate using only first-order terms. Near grazing, second-order
and corner diffraction terms improve the results for many cases.

Part B of the report investigates the pattern control of horn
antennas using lossy materials to coat the inner walls of the horn.
Integral Equation and Moment Method techniques are used to formulate
the problem. It is clearly demonstrated that side 1lobe level
reduction can be achieved using impedance surfaces on the‘inner walls

of the horn.
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PART A
NONPRINCIPAL-PLANE SCATTERING FROM FLAT PLATES —

SECOND—ORDER AND CORNER DIFFRACTIONS

I. Introduction

The modeling of a perfectly—conducting, rectangular plate for
scattering in nonprincipal planes using the Method of Equivalent (MEC)
currents was discussed in a previous report 1. Two nodels using
only first-oxrder equivalent currents were presented. The first model
used Geometrical theory ©Of piffraction (GTD) equivalent currents
(21-131+ which are well pehaved for monostatic scattering but contain
singularities for pistatic scattering. n second model using physical
optics (po) (4] and physical Theory ©f piffraction (pTD) (3]
equivalent currents was developed. These currents areé well pehaved
for both monostatic and pistatic RCS predictions. The GTD and PO/PTD
equivalent currents models give similar results and compare favorably
with moment method (MM) and experimental results away from regions
near and at grazing incidence. Near and at grazing incidence,
higher—order scattering and corner diffraction mechanisms were thought
to be significant factors in the total scattered field and a means of

including these components was desired.



In this report, two new models of the plate for
nonprincipal-plane scattering are explored. The first is a revised
version of the PO/PTD model with second-order PTD equivalent currents

{6] included to account for second-order interactions among the plate

edges. The second model uses a heuristically derived corner
diffraction coefficient [7)}, [8] to account for the corner scattering
mechanism. The patterns obtained using the newer models are

comparedto the data of the previously reported models, MM, and

experimental results.
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II. Theory

A. Second-Order PTD Equivalent Currents

As with many versions éf ﬁhe MEC, the second-order PTD equivalent
currents are formulated using the canonical perfectly conducting,
infinite wedge geometry which is used to approximate other geometries.
For the rectangular plate shown in Fig. 1, each edge is modeled as an
infinite half-plane by setting the exterior wedge angle to 2. This
is a valid approximation as long as the edges are electrically
isolated; thus, the accuracy of this model increases as the electrical
size of the plate increases. The general wedge geometry is shown in

Fig. 2. This geometry is applicable to poth first- and second-order

equivalent currents. The directional vectors and angles are:
s’ = the unit vector in the direction of incidence.
s = the unit vector in the direction of observation.
t = the unit vector tangent to the edge of interest,
directed so that it encircles the scatterer in a
counterclockwise manner.
n = the unit vector normal to the edge of interest, 1lying

on the illuminated face.

B, = the angle between s’ and the edge.

B, = the angle between S and the edge.

Yy’ = the angle between the illuminated face and the
edge-fixed plane of incidence.

Y = the angle between the illuminated face and the

edge-fixed plane of observation.
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Fig. 1. Plate geometry.
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Fig. 2. Wedge geometry for equivalent currents derivation.



« = the skew angle of integration across the surface.

In terms of the directional vectors, the directional angles are:

B’ = cos (s’ t) (1a)
_l ~ ~n
B, = cos (s * t) (1b)
_1 ’ ~ A
W = cos [ —i—fié— Xt ] *n {1c)
|57 ]
_1 "~ A
Y = cos [ —%—ZLE- X t ] *n (1d)
|s x t|
For monostatic scattering, ¢ = y', B, = m - B,’, and s = -s8’. For the

flat plate, the unit vector in the direction of incidence for the

geometry considered is:

A ~ ~ ~ "

s’ = -a, = -a, sin@'cos¢’ - a, sin@’sin¢g’ - a, cosé’ (2)

A different set of directional vectors and angles must be

formulated for each edge. The vectors for each edge are:

Edge 1: t; = a n, = -a, (3a)
Edge 2: t, = -a, n, = a, {3b)
Edge 3: t3 = -a, ny = -a, (3c)
Edge 4: t, = a, n, = a, (34)
The resulting (.’ functions for each edge are:
Edge 1: 003303 = -s5inB’sing’ (4a)
, , 2 , 2
sinB,, = V/i - sin“@’sin"¢’ (4b)
Edge 2: cosBO; = "005303 . (4c)
sinBo; = sinBog (4d)



Edge 3: cosBO; = 3inB’' cos¢’ (de)
) , 2 2

31nBo; = V/i - sin"8’cos ¢’ (4f)

Edge 4: cosBo; = —cosBo; (49)

sinBoz = sinBo; (4h)

Using the B,’ definitions, the Y’ functions can be expressed as:

-sinB’cos¢’

Edge 1: cosy, = : (5a)
1 51nB°;
cos@’
siny, = F—5—- (5b)
1 sanoi
Edge 2: cosy, = -cosy, {5¢c)
siny, = siny, (5d)
- 3 14 J s
Edge 3: cosy; = —Eigg—iiﬂf— (Se)
51nB°3
r
siny, = S239° (5£)
san°3
Edge 4: cosy, = -cosy;, {5g}
siny, = siny;, (5h)

For each edge the tangential components cof the incident electric
and magnetic fields are needed to determine the corresponding
eguivalent currents. Both soft and hard polarizations are considered.
The incident fields are:

Soft Polarization

i

E e_jE.E

a4 Eo
jker

ag (1/m E, e "= = . (6b)

(6a)

>

H i



Hard Polarization

: ~ —jk‘
El = 2ag E, € — z (6c)
it o= -ay (1/M) B e E'E (6)

To simplify the rectangular plate analysis, the incident fields

are transformed to the rectangular coordinate system. The position

vector, Xr is:
~ ~

r = 8y x +agy + a, z

(7
The propagation vector, ki for the incident field is:
~ Pl ~ ~
k = -k a, = -k (a8, sin@’cos¢’ t+ 2y sin@’ sing’ t+ 3. cos8’) (8)
Wwith respect to the rectangular coordinate system, the incident fields
are:

Soft Polarization

_E_'i - E, ejk(xsine'cosd)' +ysin9'5in¢'+zcose' )
pd [—axsin¢'+aycos¢’] (%a)
Hi - (1/m E. ejk(xsine’cosd)' +ysin9'sin¢)'+zc059’)

X [axcose’cos¢'+aycose’sin¢’+azsin6'] (9b)

Hard Polarization

E, = E ejk(xsine’cos¢’+ysin9’sin¢'+zcose’)

[e]
~ ~ ~
X [axcose’cos¢'+aycose'sin¢'+azsin6'] (9c)

B, = —(1/m Ee ejk(xsine'cosqb' +ysin9'sin¢'+zc059’)

Pl [—axsin¢’+aycos¢’] ‘ (9d)

-10-



The scattered fields for far-field observations are expressed in

terms of the vector potentials:

E,. =0

t=
iR

-3 +
Jjw [Ae UL

¢

- nFe ]

o]
R

-jw [a
Jw [ ¢

The vector potentials are:

-jkr

-
I
=

al’

_E fl(xl’yf,zl)

o

~jkr
dae’

N
le

J ﬂ(x'rY',Z’)
Cc

(10a)

(10b)

(10c)

(1la)

(11b)

For far-field analysis, the following simplifications can be made:

A

REr - r'cos® =r - ' a, (for phase variation)
R & r (for amplitude variation)
where
~ ~
4 —_
r’ = a, x + ay, v

for the flat plate oriented as in Fig. 1.

R = r - xsinB’cos¢’ - ysin@’sing’

For phase variation:

(12a)

(12b)

(13)

(14)

Finally, the vector potentials for far-field scattering from the

plate become:

_E(XIYIZ)

e
I
3l
A=
[t]
'
H .
~
H
O S—,—

€ k(xsinB’cos@’ +ysinB’ sing’)
C
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The integrals are evaluated along the perimeter of the plate in a
counterclockwise manner. On the surface of the plate, z=0. Also,

for each edge, the coordinates are:

Edge 1: X = a -b =y =<b (l6a)
Edge 2: X = —-a -b =y =b {16b)
Edge 3: -a = X S a vy =b (l6c)
Edge 4: -a < x < a y = -b (16d)

To simplify the derivation, each vector potential integral is
represented as a sum of four integrals, each corresponding to an edge
of the plate. For the second-order currents, numerical integration is
used in evaluating the integrals. I and M must be determined
separately for each edge taking into account the individual
geometries. Again, each edge is viewed as the truncation of an
infinite half-plane.

The general geometry for the formulation of the second-order
currents is shown in Fig. 3. The directional vectors and angles are
for the edge of first-order diffraction defined above in the
description of Fig. 2. The diffracted ray travels along ; at a skew
angle of RB,’. The axis of integration across the structure is again
;, which effectively eliminates all singularities except the Ufimtsev
singularity for forward observation at grazing incidence. The
distance from the first point of diffraction, 0,, to the second point,

~

O, is £. The tangent vectors to the edge of first diffraction is ty

-12-



Fig. 3. Geometry for second-order components.
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and the vector at the second edge is t,. These are oriented so that
they encircle the scatterer in a counterclockwise manner.
The second-order PTD equivalent currents components are

defined as:

£ ~ ~ f
My = —— tp [ 3 X K] (17a)
sin B,
If__ 1 ~ ~ - £
1= T s « [(ty; x 8) * K ] (17b)
sin 3,
where
-~ f\z ”~ ~
£ ~ " -35k& (o —f kO (O *
K, = | x t,] e e s I 3 ek ! * 4o (17¢)
The surface fringe current density, J . is expressed in terms of the

exact fringe-current scattering solution to the wedge; therefore, Eg
consists of a contour integral in the complex plane that is integrated
along ; and evaluated only at the upper endpoint. §§ is evaluated
using the Method of Steepest Descent and the result for a half-plane

is [5]):

KE = &V 2 |o x ty] e"jkz F vV L(1-w))
K X

jksinzﬁo’(u+COSW’) vV 1-u
[n,(ty® Ei)cos(w’/z) + ty(tye Ei)ucotﬁo’cos(w’/Z)

4+ £, (01 ED) (1/m) (1-p)cscB,’ sin (¥ /2)]

POV IO 5 L.l - 4,
_E WETRCOSUT) (1 (fe mhy - by (5 o) eotBy oSy
2 .

-14-



A

+ t1(€1' Ei)(l/n)cscBo’sinw’] (18)

The expressions for the currents simplify to:

£ £ siny
M, = -1 n,* K 212 (19a)
2 -2 sinB,
f » £ ~ f 19b
I, =ty Ky - np° Ky cotf,cosy, ( )
f . , .
where K, is given in (18) for a half-plane. Other necessary

gquantities are:

or

or

~

ty,

N,

>

9
I

>

ts
I

F (x)

F(x)

A

t, =

n2=

the unit vectors tangent to the edges of first-
and second-order diffractions, respectively,
oriented so that they encircle the scatterer in a
counterclockwise manner.

the unit vectors normal to the edges of first- and
second-order diffractions, respectively, pointing
inward and lying on the illuminated surface of the
scatterer.

the unit vector in the direction of integration skewed
at an angle [B,° with respect to the edge of the wedge
so that it represents the grazing diffracted ray.

n; sinB," + t, cosf3,’ (20a)

the distance along o from O; to 0,, the points of
first- and second-order diffraction, respectively.

ke

sin’B,’ (20b)

the modified Fresnel transition function.

0]
2 2
V3w e [ e " 4t , (20¢)
b4

-15~-



2 , 2
cosy - cos B’ 2 sin {(y/2) (20d)

= 20 =1 -

, 2 , 2
sin B,’ sin B,
¥ = the angle between ¢ and s.
cosy =0 * 8 = sinBo'sinBlcoswl + cosB,’cosB; (20e)

Y,, By = the polar angles of s in the coordinate system
local to the -edge of interest, the ny,y,t;
coordinate system.

where
cosf3; = ; . gi (20f)
sinB cosy; = ; . ;i (209)
sinBysing, = 5 * ¥ (20h)

The directional angles B,', Bor ¥’ and y are defined in (4) and (5).

The second-order diffracted field is obtained by substituting Mg
and Ig from (19) into the vector potential integrals of (11},
integrating, and then substituting into (10). Numerical integration
must usually be used to find the integrals of (11). The limits of
integration on the integrals of (11) are found using ray tracing. The
area that the first-order fields affect is bounded by the two extreme
first-order diffracted rays. Fig. 4 i{llustrates this procedure. Edge
AB illuminates the curve from A’ to B'. Integration is along the
boundary from A’ to B’. Often illuminated regions overlap due to
interactions from many edges.

The total first- and second-order fields are found by adding the

fields due to scattering by the PO currents, the PTD components, and

—-16-
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Fig. 4. Geometry for illumination of the second edge.
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the second-order components. These fields are valid for all
directions of illumination and observation, on and off the Keller cone
of diffracted rays, except for the forward direction due to grazing
incidence where an infinite singularity exists. This is the Ufimtsev

singularity.

In terms of the directional vectors, the directional angles are:

~ ~

cosf3, = s *+ t (21a)
sinB,cosy, = s * n, (21b)
sinB,siny, = s * ¥y (21c)

For each edge of second-order diffraction, the directional vectors

are:
Edge 1: €21 = ;y ;21 = —;x (22a)
Edge 2: €22 = —;y ;22 = ;x (22b)
Edge 3: 223 = —;x ;23 = —;y (22¢)
Edge 4: €24 = ;x ;24 = ;y (224)

Using the definitions of (22) in the equations of (21) along with the
n siny, cotf3,
definition of s’ from (2), the factors sinf, and cosy, in (19)

simplify to the following for each edge:

siny,, _ cosé (23a)

sin .2 2 2
B2 sin“6'cos ¢’ +cos 0’

Edge 1:

_'21 ra3nc’
sin“ @’ cos¢’sing (23b)

cotf,cosy;y, = 3 3 5
sin“@’cos ¢’ +cos B’

-18-



sinf,, _ cos@’

Edge 2: : (23c)
sinfz; sinze’cos2¢'+cosze'
-sinze'cos¢'sin¢’
cotB,,cosy,,; = > 5 > (23d)
sin 6'cos ¢’ +cos 8'
3 ’
Edge 3: 2%2%23 = > coze 5 (23e)
23 sin“@’sin" ¢’ +cos 8’
sinze’cos¢’sin¢’
cotf,icosyPy; = 5 > > (231)
sin“@’sin ¢’ +cos 8’
3 [4
Edge 4: Z—;;—‘%ﬂ - — °°‘;‘9 : (23g)
24 sin“@’sin” ¢’ +cos 8’
sinze’cos¢’sin¢'
cotB,cosy,, = (23h)

sinze'sin2¢’+cosze’

The remaining factor in the equivalent currents equations that
must be determined for each edge is Efz. The preceding vectors and
functions refer to the edge of second-order diffraction only. The
vectors and functions involved in the definition of 5; involve the
edge of first-order diffraction only except for the ; X €2 factor
which involves directional vectors from the edges of both first- and

second-order diffraction. For a half plane, 52 is given in (18).

The t, and n; vectors are defined for each edge in (3). The
incident fields, H' and E' are defined in (9). F(x) is the modified
Fresnel transtion function of (20c). The directional angles B,’ and 7/

are the same as those introduced at the beginning of this section.

-19-



All the necessary functions of these angles derive easily from the

relations of (4) and (S).

The unit vector in the direction of integration, o, for each edge

is:
Edge 1: o, = -ay sinBo; + ay cosBo; (24a)
Edge 2: o, = 3, sinBoé - a, COSBo; {24b)
Edge 3: o, = -a, cosBo; - ay sinBog (24c)
Edge 4: o, = a, cosBoz + ay sinBoz (24d)
In general the term u is defined as:
cosy - cosZB 4
= =028 = Fo (25)
, 2
sin B,/
where
cosy =0 * S (26)

For each edge, the ¥ functions are:

Edge 1: cosy, = —sinBoisinG’cos¢'+cosBoisin6(sin¢’ (27a)
Edge 2: cosy, = sinBo;sine'cos¢’—cosBO;sine'sin¢’ (27b)
Edge 3: cosyy = -sinBcgsine’cos¢’—cosBogsins’sin¢’ (27¢)
Edge 4: cosy, = sinBOZSine’cos¢’+cosBo;sin9'sin¢' (274)

Using these definitions and those of (4), the u’'s for each edge
are:

2
cosy, — cos B°;

Edge 1: My = 5 (28a)
sin 601
cosy, =~ COS Bo;
Edge 2: Hy, = (28b)
sin Bo;

-20-



The coupling terms

the ¥ terms.

(]
consider the range 0 =

This eliminates having to ¢

o3
Edge 3: My =
sin Bo;
cosy, - cos8 302
Edge 4: My =
sin Bo;

between the

and the edge of second-order diffraction are the

factor results due to these terms.

(1) 1st-order diffraction
(2) 1lst-order diffraction
(3) 1st-order diffraction
(4) 1st-order diffraction
(5) 1lst-order diffraction
(6) 1st-order diffraction
(7y 1st-order diffraction

(8) 1st-order diffraction

The |o X t,| terms for each of these

(28¢c)

(28d)

edge of first-order diffraction

Due to symmetry,

The remaining interactions that one must consider are:

from edge 1 to edge
from edge 1 to edge
from edge 2 to edge
from edge 2 to edge
from edge 3 to edge
from edge 3 to edge
from edge 4 to edge
from edge 4 to edge

interactions reduce

Edge 1 to Edge 4: |y X t24| = cosB,!
Ed 1 to Ed 2: = §ij !

ge o Edge ley X t22| sinB,!
Edge 2 to Edge 4: |y X tqu = cosBO;

-21-

o X ty), the L, and

. £
For each pair of intersecting edges a different K,

one needs to

to:

¢’ = 90° only for the plate rotation angle.

onsider interactions between some edges.

(29a)

(29Db)

(29¢c)



Edge 2 to Edge 1: |0, X tp | = sinBg) (294)

Edge 3 to Edge 2: |;3 X Ezzl = cosB,), (29e)
Edge 3 to Edge 4: |;3 X gqu = sinf,} (29£)
Edge 4 to Edge 2: |;4 X €22| = cosf, (299)
Edge 4 to Edge 3: |;4 X €23l = sinBo; (29h)

The distance parameter, £, designates the distance from the point
of first-order diffraction to the point of second-order diffraction
measured along ;, the grazing diffracted ray. The ¥ parameters are
constant functions of incidence angle only for opposite edge
interactions but are functions of distance along the edge for adjacent
edge interactions. Fig. 5 shows the geometry for determining the £
parameters for interactions between edges 1 and 2 and edges 1 and 4.
The geometries for the other interactions are similar. The limits of
integration in the vector potential integrals of (15) vary according
to the illumination of the edge of second-order diffraction. The
extent of illumination is bounded by the grazing diffracted rays from
the edge of first-order diffraction. Thus, the limits of integration
are a function of the incidence angle. The distance parameters, ¥ and
L, along with the limits of integration are given below for each pair
of interacting edges. Recall that:

L = k& sinZBO' (30)

-22-
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Edge 2 : e

(-a,-b) Edge4d (a,-b)

Fig. 5. Geometry for determining the distance parameters.
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a - X4
2 =
14 7 cosB,’
1
Lig = k& 48in Bo1
Limits of integration: ~a £ x < a
a - 2btan(n—B?’) < x S a
Edge 1 to Edge 2
2a
2 =
12 7 cosB,!
= 2 s 2 ’
Ly, = k&yp sinBy]
Limits of integration:
2a
-b = < Db
Y tan (m-By))
Edge 2 to Edge 4
a + x4
£ = —
24 51“30'
2
= f . 2 '
L,,; = k£yysin B°2
Limits of integration: -a = x = a

-a = x = -a + 2btanBo;

., 2
L,; = k&£;; sin Bo;

Limits of integration:

2a

-h = =< -
b y =b taﬂ(Bo;)

~-24-

(3la)
(31b)
for Bo; s - tan-l(a/b)
for B, = M - tan ' (a/b)
(31c)
(314)
-1
for Bo; < - tan (a/b)
(31e)
(31f)
for B, = tan " (a/b)
for B, = W - tan ' (a/b)
(31g)
(31h)

-1
for B,, = tan (a/b)



Limits

Limits

of

b_yZ
3, sinf,’
2
L2, ,
Ly, = k£3,3in B,]
integration: -b £y =Db
b - 2atanBos =y =Db
Edge 4
2b
34 sinBog

., 2
Lyy = k€34 sin Bo;
integration:

——Z—b———,—-SxSa
tanB03

Limits

of

, 2
integration: -b =y =D

-b sy = -b + 2atan(n-Bo;)

Edge 3
2b
£43 COSBOI
4
L2, ,
Lyy = k¥,; sin 604

Limits of integration:

2b -
tan(n-B,;) -

w
IA
1)

a -

~25-

(31i)
(313)
for B, 2 tan = (b/a)
for Bog -3 tannl(b/a)
(31k)
(311)
for B, = tan_l(b/a)
3
(31m)
(31n)
for B,f = M- tan *(b/a)
for BOZ z tan_l(b/a)
(310)
(31p)

-1
for B,) = T~ tan ~(b/a)



The second-order fields are determined by substituting the

current components for each pair of interacting edges into the vector

potential equations of (11) and using (10). For opposite edges the
integrals reduce to closed~form expressions. The adjacent-edge
integrals must be evaluated numerically. Just as for the first-order

diffractions, integration is with respect to either the x or Yy
coordinate so that the integrals involved simplify to the following:

Edge 1 to Edge 4

X
-3k & ' '
= } o Ty ) & o5 (32a)
*1
b * -j)de“ jkxsin@’ cos@’
Il4 = e F (Y Ly, (l+cosy;) ) dx (32b)
X1
Edge 1 to Edge 2
_ Y 42kysin@* sin@’
I,, = - e dy
¥y
dak
e e s el % ’
XP[ ]ta“(n'Bo'l) sin s:.n(;b]
= —-2bsinc(2kbsinB'sin¢’) - 5% 5in6’ sing’ (32c¢)
Edge 2 to Edge 4
a _X -3k €5y VI o) JkxsinB’ cos’
124 = e F(V L (1-p5) ) e dx (324)
X1
X
b -4k ¥ n@* '
r, = ? o 24 p (v, (THcosyy) ) IRxeinBcosd gy (32e)
x
1

—26-



Yy
j2kysinB’sing’

Y1 4dak

exp [-j ——:';B‘;-Iz— sine’ sin¢’]

3 3 1 gy ' +
2bsinc (2kbsinB’sing’) 35K sinb’ sing’

Edge 2
Y2 . . ; :
-3k ¥ f——— k e’ !
- —f o k%3, UarETR o Jkysin sing
32
Y
b Y2 -3k 5, jkysinB’sing’
I =-fe F(V Lj,(l+cosy;) ) e dy
32
Y1
Edge ¢
x j2kxsinB ¢
j2kxsinB’ cos@’
e = T
X1
4bk
exp(—j - sin9'ccs¢']
o tan603
j2k sin8’ cos¢’
Edge 2

Y1
Y2
b —jk242 jkysin@ sing’
2 = -f e F(V Ly, (l+cosy,) ) e dy
Y3
Edge 3
*2  $2kxsin®’sing
_ j2kxsin@’ sin@’
X1
4kb
ex ] — e 3 ’ ’
p[ ! By cinees? J

j2k sinB’ cos¢’

-27-

Y2 - o] 7 3 ’
Ia = _/ e jk242 F(V—m ) e]kysine 51n¢ dy

(32f)

(329)

(32h)

(321)

{323

{32k)

(321)



B. Corner Diffraction

Because the GTD and UTD diffraction coefficients are derived from
the exact solution to scattering by an infinite wedge, the
coefficients fail to account for the joining of two edges at a corner.
For certain aspect angles, the scattering from the corners is
significant. Pathak and Burnside developed a heuristic corner
diffraction coefficient [7]-([8] based upon an appropriate, although
non-rigorous, modification of an asymptotic evaluation of the
radiation integral due to the equivalent edge current that would exist
along the scattering edge if the corner were not present. One major
flaw in the coefficient is that it is non-unique for certain
backscatter angles near normal incidence {93, thus a
rigorously-developed corner diffraction coefficient 1is desirable.
However, Pathak and Burnside’s coefficient is successful for many
plate geometries and may be used with caution.

The geometry for a corner in a planar surface is shown in Fig. 6.
The total diffracted field from one corner is the sum of contributions
from each of the edges comprising the corner. The general form of the

corner diffracted field is:

Ec(s)=_Ei(QC)_5C‘//" ?l _ V/ s(s+s.) e“jks 53
- s"(s'+s") Se s
where

Ei(QC) = the incident field at the corner.

Bc = the dyadic corner diffraction coefficient.
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Fig. 6. Geometry for a corner in a planar surface.
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s = the distance from the corner to the receiver.

s’ = the distance from the source to the point of edge
diffraction.

s" = the distance from the point of edge diffraction to the
receiver.

s. = the distance from the source to the corner.

e‘jks = the phase factor.

The dyadic corner diffraction coefficient, like the ordinary
diffraction coefficient, is in terms of parallel and perpendicular
components:

b= el a3 D + o e pe (34)
Dg and DZ are the hard and soft corner diffraction coefficients,
respectively, given by the following:

e-jn/4 / sinB sinf,

c

D = Cs. n(Qp)

s,h s, h'*E _
ST cosB,. — cosB,

FlkL.a (m+B,. - B.)] (35)

where

_e—jn/4
CopnlQg) = ——— X
2V 2nk sing,

FlkLa (B )] F[ La(B ) /A ]
cos (B /2) klea (o = Bel

+ +

_ F[(kL

R
cos (B /2) c oc c
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F is the Fresnel transition function given by:

[s4]
) 2
F(x) = 23V x e j et at (37)
Vx

i+

B are as:
+

B =y ¥ (38)

B, is the Keller cone angle. The other angles and functions are:

B, = the angle between the incident ray at the corner and
the edge of interest.

B, = the angle between the diffracted ray at the corner

and the extension of the edge of interest as shown in

Fig. 3-5.
aly) = 2cosz(w/2) (3%a)
L = Tgi%Z;T sin’ (B,) (39Db)
L, = Eiiz (39¢)

These fields simplify considerably for far—-field, plane-wave
scattering from the rectangular plate.

The RCS of the flat plate in all planeé can be determined using
only the corner diffraction coefficient. Near and at normal
incidence, this formulation fails due to the nonreciprocal nature of
the corner diffraction coefficient. To alleviate this problem, near
and at normal incidence, the GTD equivalent currents solution is used;
and the corner diffraction results are used away from the problem

area. The total scattered field from a corner consists of terms for
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each of the adjoining edges; therefore, eight terms are needed for the
rectangular plate.

The general expression for the corner diffracted field due to one

of the two adjoining edges is given in (33). For far-field
scattering, s & s_ & s’ & s" 2 w ; therefore:
i e-jks
c ~
E (s) = -E (Q.) * D¢ 5 (41)

for far-field scattering.
For far-field backscattering, L, = w 5o that:

FlkL.a(m+B,—B)) =1 (42)

Also, B,. = m™ - B, and ¥ = Y so that:

v sinB. sinB,. _tang
(o]

_ 43
cosf3 . - cosf, 2 (43)
The diffraction coefficient simplifies to:
-jm/ 4
c -e tan
Dop = ——— G4 n(Qg) 23°— (44)
vV 2nk

|
=
IR

For far-field backscattering, L & w and Cg ,(Qg) simplifies to:

_e-jTI/4 1
Cs,h(QE) = ‘F[ 2 ] +
2v¥ 2wk sinfi, 2ntcos” {n-B,)
1 1
cosy ’F[ 2 ]l (43)

2mcos” (n-f3,)
The total field scattered due to one edge adjoining at a corner

simplifies to:
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3 -jks
c i e ,
ES,n(s) = B Q) gricosE. X

2
Rl
2 cosy ZHCOSZBO

2ncos BB,

The top view of the plate geometry for the corner diffraction
analysis is shown in Fig. 7. The incident fields are the same as in
(9) . The field must be determined at the corner of interest. The

corners are designated as the following:

Corner A: X = a y =b
Corner B: X = -~a y =b
Corner C: X = =-a y = -b
Corner D: x = a y = -b
The angles Y are the same as those given in (5). The Y angle used for

the scattering component for a designated edge and corner is the y
associated with the edge. For example, the y; angle is used for
scattering from corner A due to the presence of edge 1.

The B, angle is the angle between the —;’ and the edge or:

cosB, = -8 " * C (47)

where

c = the unit vector tangent to the edge of interest pointing
outward from the corner of interest.

The vectors and angular functions for each corner/edge combination

are:
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Fig. 7. Top view of the plate for the corner diffraction analysis.
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Corner

The final parameter that
the corner to the observation point.

distances is in Fig.

e

|
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1o

Edge 1:

Edge 3:

Edge 2:

Edge 3:

Edge 2:

Edge 4:

Edge 1:

Edge 4:

Cp1

A

Cpg =

8.

approximations are used:

Amplitude:

Phase:

EEE

13

IR

Sa

must be designated is s,

For far-field scattering,

R
R

Sp

sin@B’

sin@’

sin@’

sinB’

cosBoA1= -5in@’ sing’

C0550A3= -sinB’ cos¢’

cosBOBz= -sin@’sing’

COSB°53= sinB’ cos¢’

cosB%u= 8inB’'sing’

cosB°C4= sin8’ cos¢’

cosf o1 sinf’ sing’

cosB°D4= -sinfB’'cos¢’

]
R
[
o
R
4]

c

2 (a%+b?) (cos¢’ +sing’)
2. .2 s

2(a“+b") (sing¢g’ ~cos¢’)
2 .2 :

2(a“+b”) (cos¢’+sing’)

2(a2+b2) (cos¢’ -sing’)
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(@]

Edge 3

Edge 2

Edge 1

Edge 4

Fig. 8. Three-dimensional view of the plate for corner diffraction.
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The total field scattered by the plate consists of a term of the form

of (46) for each edge joined at a corner. These eight terms are

added to arrive at the total field.
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IITI. Results

Computations were made for a square plate with each side equal to
5.73 A, Comparisons are made among the following: MM and
experimental results, the PO equivalent currents model, the GTD
equivalent currents model, the PO/PTD equivalent currents model, the
PO/PTD/2nd~order equivalent currents model, and the corner diffraction
coefficients model.

Fig. 9 shows soft polarization results for a 30 rotated plate.
Even the PO equivalent currents, which account only for surface
Scattering, give good results near normal incidence. As the angle of
incidence moves away from normal, there is a need for components to
account for edge diffraction. The GID and PO/PTD models greatly
improve the results in the grazing regions, although there remains
some disagreement which points to the necessity for higher-order and
corner diffraction components. Fig. 10 shows results from the PO/PTD
model with the second-order PTD coefficients added and also shows
results from the corner diffraction coefficient model. Since the
corner diffraction coefficients are inaccurate near and at normal
incidence, the GTD equivalent currents solution is used in the region
+5° on either side of the normal direction and the corner diffraction
solution is used elsewhere. The second-order currents do not improve

the results for this case and even result in worse agreement than that
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obtained using the first-order models. The corner diffraction model
improves the results near grazing and agrees with the first-order
models away from grazing, indicating that the corner diffraction
mechanism is the more crucial scattering mechanism for this plate
rotation and polarization.

Fig. 11 shows the hard polarization results using the first-order
models for the same plate configuration rotated 300. Near and at
grazing there is a major discrepancy between the first-order,
high-frequency models and the experimental and MM results. The PO/PTD
models with the second-order components added and the corner
diffraction coefficients model yield much Dbetter results although
discrepancies still exist. These results are displayed in Fig. 12.

The soft polarization results for the same size plate rotated 45°
are in Fig. 13. One would expect that corner-diffraction would play a
major role at this angle of rotation so that the large discrepancies
of the first-order models near grazing incidence are not surprising.
The addition of second-order equivalent currents yields excellent
results in this case. Surprisingly, the corner diffraction model does
not improve the results. These results, shown in Fig. 14, indicate
that for this angle of rotation and polarization second-order
components are the major contributing factors.

Hard plarization results for the same rotation angle are shown in

Figs. 15 and 16. Just as for the 30° rotated plate for hard
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polarization, the first-order, high-frequency models do not produce
good results near the grazing regions. The corner diffraction model
greatly improves the results; however, the addition of second-order
components does not result in an improved model. This indicates that

the corner diffraction mechanism is dominant for this configuration.
IV. Conclusions

The nonprincipal-plane scattering from a rectangular flat plate
was considered. Comparisons among five high-frequency models, MM and
experimental results were made. Near normal incidence all the models
agreed; however, near grazing incidence a need for higher-order
and corner diffraction mechanisms was noted. In many instances the
second-order and corner-scattered fields formulated in this report

improved the results.
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PATTERN CONTROL OF HORN ANTENNAS

I. Tasks Accomplished

During this period, the computations of the impedance elements
have been completed. These include interactions between the two
electric current modes, the electric current mode and the magnetic
current mode, and the two magnetic current modes. Especially, an
accurate and efficient formulation of computing interactions between
electric current mode and magnetic current mode has been accomplished.
This, together with other subroutines we have developed, enables us to
£ill-in all the elememt in the matrix.

After the fill-in of the impedance elements in the matrix, the
forward problem is accomplished. That is, given the specification of
the horn and the excitating waveguide mode, the radiation pattern of
the antenna based on the integral equation can be obtained.

An example case was run for a standard X-band gain-horn (DBG-520)
with the configuration in Figure 1. The H- and E-plane patterns of
this horn antenna with perfectly conducting walls are shown
respectively in Figures 2 and 3. Comparison with the gain pattern

available from the manufacturer for up to the first side lobe shows
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good agreements, although the cross polarization has not yet been
accounted for.

To investigate the effect of the lossy coating on the radiation
pattern, two sets of the lossy materials were used to cover the top
and bottom walls of the horn. This is intended to improve the E-plane
pattern. The plots shown in Figures 4 and 5 are obtained by uniformly
covering the top and bottom walls with a layer of AlSb with a
thickness of 0.001A, ( 3 x lo—smeters). The material has a relative
dielectric constant of 11 and a resistivity of 0.005 f-m. The
resulting E-plane pattern shows about 2-dB improvement in the
sidelobes. Figure 6 and Figure 7 are obtained based on a material
which has a relative dielectric constant of 3 and a sheet resistance
of 1500 Q per square. The thickness of this material is 2 mils (5.08
x 10—5 meters ). The resulting E-plane pattern shows about 3-dB
improvement in the first sidelobe and 4-dB improvement in the second
sidelobe.

Further improvement can be expected by increasing the thickness
of the coating. However, the wvalidity of our impedance boundary
condition becomes questionable. A better impedance condition has been
developed; however it has not yet been implemented in the computer
program.

In the moment method solution of this project, thg computations

of the matrix elements are the most tedious part of the work. We have
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basically fullfilled this task. Although we still did not have time
to connect all parts of the work together to realize the synthesis

problem, we can say we are progressing well toward that goal.

II. Future Work

Future work will be concentrated on the following items:

1. To include the cross polarization components of the
equivalent magnetic currents on the two appertures.

2. To compare this integral equation method with another
rigorous method by H. Patzelt and F. Arndt [1].

3 To investigate the realization of the sheet impedance needed
to control the radiation pattern, and to extensively verify
the validity of the impedance boundary condition.

4. To reassemble the matrix equation to solve the synthesis

problem as was presented in the previous report.
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